
Research in Industrial Projects for Students

Institute for Pure & Applied Mathematics

University of California, Los Angeles

Sponsor

IBM

Final Report

Social Network Analytics

Student Members

Edward Chang (Project Manager)

Edward Dewey

Maksim Tsikhanovich

Seçkin Şahin

Academic Mentor

Blake Hunter

Sponsoring Mentors

Vikas Sindhwani

Aurélie C Lozano

Prem Melville

Dmitriy Katz-Rogozhnikov

Date: August 20, 2010

This project was jointly supported by IBM and NSF Grant DMS-0439872.

Abstract

Twitter has become increasingly important to consumers and businesses as people turn to
social media to read and form opinions about products and companies. How can a business
track what people are talking about and who is most influential in these discussions? We
investigated topic detection and causal influence modeling in microblogs, producing some
novel algorithms and applying them to Twitter. We present a new Non-negative Matrix
Factorization algorithm which uses 1-norm regularization and simplex projection for sparse
encoding of tweets over sparse topic vectors. We show a way of automatically choosing regu-
larization and constraint parameters simultaneously, using a two-dimensional generalization
of the L-curve method. Our algorithm compares favorably with Hoyer’s (JMLR 2002) sparse
NMF algorithm. These models are utilized to convert Twitter content from a word-based
representation to a topic-based representation, which requires less memory to represent and
makes our further analysis computationally feasible. We then apply Multivariate Group
Orthogonal Matching Pursuit (MGOMP) to detect influential twitter accounts based on
notions of Granger Causality. We investigate how different choices for the number of topics,
discretization of time, and time lag affect the algorithm’s performance on Twitter data,
benchmarked against retweet rates.

3

Acknowledgments

This report would not have been possible without the extensive support of the IBM mentor
team: Vikas Sindhwani, Aurelie Lozano, Prem Melville, and Dmitriy Katz-Roghozhnikov.
They have provided invaluable guidance at every step of the research process, from helping
us first understand the problem formulations to enabling us overcome the obstacles that
we faced to giving us advice about how best to present our findings. Blake Hunter, our
academic mentor, has also been crucial to the success of this project, particularly during
the initial and final stages and for providing inspiration and motivation throughout. We
would also like to thank everyone at IPAM who has made RIPS possible for building the
infrastructure and support for all of our projects.

5

Contents

Abstract 3

Acknowledgments 5

1 Introduction 13

2 Non-Negative Matrix Factorization 17

2.1 Rank-one Residue Iterations as a Solution to NMF 17

2.2 Benchmarking Against Human Annotations 19

3 Initialization and Model Selection 23

3.1 Initialization . 23

3.2 Model Selection . 24

3.3 NMI Versus Reconstruction Error . 40

3.4 Memory Usage Considerations . 42

4 Evaluation of Overall Performance 45

4.1 Comparison with Hoyer’s Algorithm . 45

4.2 Cross Validation . 46

5 Introduction to MGGCM 51

5.1 Mathematical Background . 51

6 Stopping Criteria for MGOMP 55

6.1 Testing MGGCM on Simulated Data . 55

6.2 Stopping Conditions for MGOMP . 56

7 Applying MGGCM to Twitter 65

7.1 Difficulties Working with Twitter Data . 65

7.2 Randomized Sub-Sampling of Projections 69

7.3 Provisional Results . 70

8 Conclusion 77

8.1 Overview of Work Accomplished . 77

8.2 Future Avenues of Research . 77

A Matlab Code 79

APPENDIXES

7

REFERENCES

Selected Bibliography Including Cited Works 81

8

List of Figures

2.1 Simplex Projection . 19

2.2 Relative sizes of the entries of an average row of W 21

3.1 Impact of initialization on final objective value obtained 24

3.2 ||X −WH||2F vs λ and z . 25

3.3 NMI vs λ and z . 26

3.4 ||W ||0 vs λ and z . 28

3.5 ||H||0 vs λ and z . 29

3.6 ||W ||0 versus ||X −WH||2F . 31

3.7 ||W ||0 + ||H||0 versus ||X −WH||2F for fixed z and varying λ 32

3.8 1-dimensional curve-finding results . 33

3.9 ||W ||0 + ||H||0 vs ||X −WH||2F for fixed λ and varying z 34

3.10 Error vs sparsity varying z and λ . 36

3.11 2-d corner finding on Twitter datasset . 37

3.12 2-d corner finding results . 38

3.13 2-d corner finding results with respect to NMI 39

3.14 ||X2 − Ŵ2H1||2F versus λ . 41

3.15 Correlation between NMI and reconstruction error. 43

4.1 Cross validation benchmark . 49

6.1 Residual Plot of Simulation Data for a Blogger with One Influencer 58

6.2 Residual Plot of Simulation Data for a Blogger with Two Influencers 59

6.3 MGOMP Performance vs δ G = 20, K = 10, d = 5, τ = 100 61

6.4 MGOMP Performance vs δ G = 40, K = 10, d = 5, τ = 100 63

7.1 Residual Plot of Twitter Data 1 . 66

7.2 Residual Plot on Twitter Data 1 Zoomed on First 50 Bloggers 66

7.3 Residual Plot of Twitter Data 2 . 67

7.4 Residual Plot of Twitter Data 2 Zoomed on First 50 Bloggers 67

7.5 Spearman correlation between retweet rate and Granger Rank for various τ
with d = 5 . 71

7.6 Spearman correlation between retweet rate and Granger Rank for various τ
with d = 10 . 72

7.7 Correlation between Granger Rank and unrestricted retweet rate for 1000
Bloggers, 50 Topics and Retweet Dataset 1 74

7.8 Correlation between Granger Rank and unrestricted retweet rate for 1000
Bloggers, 50 Topics and Retweet Dataset 2 75

7.9 Internal correlation between Granger Rank and number of retweets using
NZTMGGCM . 76

9

List of Tables

3.1 Correlation between NMI and sparsity . 42
3.2 R2 corrleations bewteen NMI and sparsity, correcting for error 42

4.1 Comparison of Sparse RRI and Hoyer’s sparse NMF algorithm on various
text datasets. 47

4.2 Comparison of space & time requirements of Sparse RRI and Hoyer’s sparse
NMF algorithm. 48

7.1 Granger Rank vs. Retweet Rate correlations 70

11

Chapter 1

Introduction

Social media have become very important as a source of information and opinion, and IBM
has been developing and implementing mathematical tools to understand it. Two major
directions in the study of social media are Topic Modeling, the effort to understand online
content as arising from a mixture of topics, and Influence Modeling, the effort to understand
how different online authors influence each other. Our work is at the intersection of these
two efforts.

Topic Modeling

Our approach to topic modeling uses non-negative matrix factorization (NMF). NMF is
used to represent content (such as a picture of a face, or in our case, a blog post) as a
mixture of its parts (such as facial organs or, in our case, topics).

Given a database with some sort of content, one begins by representing everything
in that database as a vector. For example a blog post using words from a set L =
{w1, w2, ..., wK} may be represented as a vector (a1, a2, , aK) where ai is the (weighted)
frequency with which word wi occurs in the blog post. This gives a set S of vectors cor-
responding to the database of content that one is trying to model. One then searches for
a set of vectors B = {b1, , bp} such that every element of S may be approximately realized
as a sum of vectors in B with positive coefficients; this positivity condition ensures that,
if the process is successful, each element of the database may be viewed as a mixture of
parts corresponding to the elements of B. Mathematically, this amounts to approximately
factoring a large N x k matrix X with non-negative entries as X ≈ UV , where U is an
N x p matrix, V is a p x k matrix, and both have non-negative entries. For ease of later
computations, and in order to more easily give an intuitive meaning to the solution, one
may require U to be as sparse as is possible without sacrificing too much accuracy. In
the blog example this would mean that each blog post be modeled as a mixture of as few
topics as possible. One refers to this as “sparse NMF”. A short review of NMF techniques
is available in [13]; for a more detailed treatment see [10].

Topic Modeling is very useful in grouping content by topic. Suppose that one wanted to
group all twitter content by topic. merely looking for the presence of certain keywords would
not work. For example, one would not want to lump content about cold war Honduras with
content about clothing retail just because both include the string “banana republic”. Topic
modeling can avoid such pratfalls. As we will show, it can also be used to inform influence
modeling.

13

Influence Modeling

Our approach to determining who is influential in online communities uses Multivariate
Group Granger Causal Modeling (MGGCM), an algorithm that quantifies influence using
the notion of Granger Causality. Granger Causality is based on the idea that a cause must
precede its effect; thus, given two time series of data A1, A2, A3, ... and B1, B2, B3, ..., if the
time series variable A is said to causally affect B, then the past values of A should help
predict the future values of B better than using the past values of B alone [5].

We can use this idea of causality to quantify the influence of one blogger upon another.
Bloggers do not always explicitly cite each other or link to the blogs that influence them,
so instead we look at the content of a blog itself and see how best we can predict it from
the past content of all bloggers. Using multivariate regression, we can solve this problem to
quantify this influence and construct a weighted directed graph of influence that shows how
one blogger influences another. The Granger rank of a blogger is that blogger’s weighted
out-degree in the causal directed graph, and provides a measure of how influential that
blogger is in the community. This approach was first presented in [14], and the authors
have successfully applied Granger causal modeling to high-energy physics papers and blogs
about the IBM Lotus software brand.

Data

In order to test our algorithm, we use 4 annotated data sets. Annotations was done by
humans going through the datasets and classifying each document into one of k topic cate-
gories. The datasets are named and described in the following table:

20 ng Consists of about 20000 newsgroup documents, taken from 20 newsgroups. Each
newsgroup is on a different topic, so the origin of each document in one of the 20
newsgroups provides a sorting of the documents into sets each consisting of one of
the 20 topics [15].

bbc Consists of documents from the BBC news website corresponding to stories in five
topical areas from 2004-2005: business, entertainment, politics, sport, and tech [6, 1].

reuters A subset of Reuters Corpus Volume I, consisting of newswires stories classified by
hand into topic classes. Our subset consists of 10 of the optic classes, for a total of
7285 documents [16].

tdt2top30 Consists of news wire documents. Documents were annotated by humans into
100 topics. We use only the topics from the 30 largest topics [4].

Twitter Tweets collected over two month time period, from the 1000 twitter accounts
which used the string “IBM” most often over that period. Unlike the other four
datasets this dataset lacks any built-in document-topic associations. This dataset
also has lower bounds on how often the content of a blogger in the dataset was re-
tweeted.

The number of topics to be used is a parameter in NMF, and we did not make progress
on how to choose this parameter. For ease of comparison in all experiments run on the
four annotated datasets the number of topics used was equal to the number of topics in the
human annotations: that is, 20 for ng20, 5 for bbc, 10 for reuters, and 30 for tdt2top30.

14

Innovations

We present a modification of Ngoc-Diep Ho’s RRI algorithm for NMF which encourages a
sparse solution. To our knowledge this is the first use of RRI with sparsity in mind. Our
algorithm produces solutions with lower reconstruction error than the older sparse NMF
algorithm of Patrick Hoyer [11]. We present an effective algorithm for model selection using
a 2-dimensional generalization of the L-curve method.

We use our NMF algorithm to pre-process data for the MGGCM algorithm - instead of
MGGCM running on vectors of words, we run it on vectors of topics. To our knowledge this
is the first time this has been done, and it makes MGGCM feasible for very large datasets
on a desktop computer.

Summary of this Report

In Chapter 2 we give a more detailed presentation of sparse NMF and present our imple-
mentations of it, and our results from applying it to Twitter datasets.

In Chapter 3 we discuss model selection problems for sparse NMF.
In Chapter 4 we benchmark our NMF algorithm by comparing it with the sparse NMF

algorithm of Patrik Hoyer [11] and running a cross-validation test.
In Chapter 5 we discuss MGGCP in detail.
In Chapter 6 we discuss stopping criteria for MGGCP, motivated by results from sim-

ulated data sets.
In Chapter 7 use NMF to pre-process Twitter data and present the results of applying

MGGCP to the pre-processed data.

15

Chapter 2

Non-Negative Matrix Factorization

Let’s begin by setting some notation. Rd+ denotes the set of vectors in Rd with non-negative

components: {(v1, v2, ..., vd) ∈ Rd : vj ≥ 0}. Similarly, {Ra×b+ denotes the set of a × b
matrices with real, non-negative entries. For any matrix X, the Frobenius Norm of X,

||X||F , is defined as ||X||F =
√∑

i

∑
j X

2
i,j . The `1-norm of X, ||X||1, is defined as

||X||1 =
∑

i

∑
j |Xi,j |. The `0-norm of X, ||X||0, is the number of non-zero entries in X.

Despite it’s name it is not a norm. A matrix whose entries are mostly equal to zero is said
to be sparse.

Non-Negative Matrix Factorization (NMF) is a very general technique for parts-based
learning. It can be applied whenever one has a set of n datapoints in Rd+. Let X ∈ Rn×d+ be
a matrix whose rows are the n datapoints. Let k be some integer (typically much smaller
than d and n). In NMF, one looks for W ∈ Rn×k+ , H ∈ Rk×d+ such that ||X − WH||2F
is small (one could use other norms than the Frobenius norm here, but we shall always
use the Frobenius norm to quantify the difference between X and WH). Thus, WH is an
approximate factorization of X into two much smaller matrices. Let hi, i = 1...k be the
columns of H and wp, p = 1...n be the rows of W .

We may interpret this result as saying that each row of X is approximately representable
as a mixture of the vectors h1, ..., hk. So that when the rows of X are vectorized blog
postings, all the rows of X are represented as mixtures of vectors ht, which it is reasonable
to identify with the topics discussed in the original blog postings.

2.1 Rank-one Residue Iterations as a Solution to

NMF

In order to factor X we use a method called Rank-one Residue Iterations (RRI) due to
Ngoc-Diep Ho[10], which is relatively new, and has not yet been applied to textual data.
The key idea behind RRI is that when the reconstruction error ||X −WH||2F is minimized
the reconstruction error contributed by each of W ’s columns is also minimized. The reverse
is not necessarily true, nevertheless the assumption behind RRI is that minimizing the error
contributed by each column of W will likely minimize the full reconstruction error.

17

2.1.1 RRI for Sparse NMF

The RRI algorithm we implement is the one proposed by Ho for minimizing the function

||X −WH||2F + λ||W ||1 (2.1)

. At each iteration the column of W being optimized, wt is updated

wt ←
[Rth

T
t − λ1n×1]+
||ht||22

(2.2)

where Rt = X−
∑

i 6=twih
T
i is the residual that wt ought to explain, ht is the corresponding

tth column of H, and [v]+ is the projection of v onto the positive orthant. As a result in
Equations 2.1 and 2.2 λ serves a parameter which zeros out increasingly larger entries of wt
as its value increases. Note that setting λ = maxi

∑
j Xij will force all entries of W to be

set to 0. After optimizing each column of W , each column of H is optimized by a update
rule similar to Equation 2.2 and then the process is repeated again until some convergence
criterion is met.

2.1.2 Enforcing Constraints upon RRI

The base algorithm supplied by Ho is somewhat incomplete for our needs because the
objective function we are interested in minimizing is

||X −WH||2F + λ||W ||0 (2.3)

while Ho’s algorithm attempts to minimize the function in Equation 2.1. The main problem
we run into is scaling, namely WH = αW 1

αH. Due to this problem RRI may decrease ||W ||1
without actually decreasing ||W ||0. To eliminate this possibility we constrain the rows of
H to have ||h||1 = z, where z is a parameter we choose. This problem reduces to projecting
a vector onto the simplex {h : ||h||1 = h}. Decreasing z tends to lead to a sparser solution
but sometimes leads to higher reconstruction error (see Figure 3.2).

RRI is guaranteed to converge, but it is not guaranteed to converge to a global minimum
since the problem is nnon-convex. In practice it may fail to get close even to a local
minimum, for example, if H and W are initialized in a region where the objective function
is relatively flat, so that the algorithm reaches its stopping condition too soon.

2.1.3 Overview of Our NMF Setup

Thus, factorizing X requires the following steps:

1. Model selection.

• Choose k.

• Choose λ.

• Choose z.

2. Initialize W and H.

3. Perform RRI on X, W and H.

Our work focuses on the first 2 of these steps.

18

projected
onto (0,z)

(0,z)

(z,0)

Figure 2.1: In 2 dimensions we are projecting points from the xy plane onto the
2-d simplex. A point in the blue region will be projected onto (0, z) or (0, z) and
thus be sparsified. The blue region grows ass z shrinks, thus the tendency for this
sparsification to occur is increased if we choose z smaller.

2.2 Benchmarking Against Human Annotations

The human annotations assign a single topic to each document, whereas our algorithm
assigns many topics, with different weightings, to each document. Recall that the vector of
weighted topics associated with each document is given by the row of W corresponding to
that topic. In order to compare our algorithm’s output to the human annotations we first
go through each row of W , find the maximum entry in that row, and record which column
the maximum entry was in. The number of this column is then the index of the topic most
associated with that document by the algorithm. Let t(m) be the number of the column
containing the greatest entry of row m. Then the function t(m) provides an assignment
of exactly one topic to each document, which can be compared directly with the human
annotations.

Let p(m) be the topic associated with document m by the human annotators. Note that
we do not know how (if at all) the topics chosen by our algorithm correspond to the topics
used for the human annotations. Thus we cannot use a simple accuracy measure in order
to compare t to p. Instead, we compute the normalized mutual information (NMI) of t and
p.

For any two random variables T and P , the mutual information (MI) of T and P is
defined

MI(T, P) = H(T, P)−H(T |P)−H(P |T)

where H(T, P) is the joint entropy of T and P and H(T |P) is the conditional entropy of T
upon P . In order to view t and p as random variables, we imagine choosing a document at
random, with an equal probability of choosing any document, and taking the index topic
associated with that document by t or p as the random variable. NMI is defined as

NMI(T, P) =
MI(T, P

max(H(T), H(P))

Intuitively, NMI measures the extent to which two random variables convey the same in-
formation [9].

19

One drawback of this method is that we throw away a lot of the information in W
before comparing with the human annotations. In particular, if many rows of W has no
clear maximum then the NMI might be misleadingly low. On the other hand, if most
rows of W do have a clear maximum then it is natural to see the column containing that
maximum as the unique topic associated with the document corresponding to that row. In
order to see which is the case, we factored X ≈ WH with the optimal parameters chosen
by our model-choosing algorithm (see below). We then scaled each row wt of W so that
||wt||1 = 1. We re-ordered the entries of each row from highest to lowest, and then averaged
each column and plotted it (see figure 2.2. The resulting graph therefore shows the relative
sizes of the highest, second highest, etc. entries of a typical row of W . The graph shows a
sharp decrease from the highest entry to the next highest, suggesting that our method of
comparison is valid.

In the following, the “NMI” of a factorization of an annotated data set X as X ≈WH
shall always refer to NMI(t, p) as detailed above.

20

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) bbc

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) reuters

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) tdt2top30

Figure 2.2: Relative sizes of the entries of an average row of W .

21

Chapter 3

Initialization and Model Selection

3.1 Initialization

The first problem we must address is how to initialize the matrices W and H. Our algorithm
is very sensitive to the initialization of W and H. This is for three main reasons. First, if
we initialize in a region of Rn×k × Rk×d where the objective function is very flat without
actually being at a minimum, the algorithm may terminate too soon. Second, the NMF
problem is non-convex, as can be seen by the fact that if (W,H) is a global minimum of the
objective function, then so is (QW,Q−1H), where Q is any invertible matrix that does not
change the 1-norms of the rows of H (e.g. a permutation matrix). Therefore, we expect the
solution found to be sensitive to the starting conditions. Third, there is no reason to think
that all local minima are global minima, and even if the first problem does not occur, the
algorithm will find only local minima.

We resolve this problem by randomly selecting 4 initializations, running RRI on each,
and choosing the run with the lowest objective value. We have no good reason for doing
4 initializations rather than 5, and one possible avenue of further research might be to see
how many initializations one must do to have a given probability that the best run is within
some distance of the actual minimum (or of the minimum over all possible runs).

Random initialization of the matrices is performed in 5 steps:

1. Assign each entry of H to be zero (with probability 1−p) or non-zero (with probability
p)

2. Choose the value of each non-zero entry of H from the uniform distribution on [0, 1]

3. Choose the value of each entry of W from the uniform distribution [0, 1]

4. Find the real number α which minimizes ||X − αWH||F , and scale W and H by
W =

√
αW , H =

√
αH

5. Perform simplex projection on the rows of H

We were unable to find a better initialization procedure but did not attack this problem
systematically. For more information on initialization see [10].

In order to see how sensitive RRI is to initialization, we performed RRI 1000 times
with 1000 different initializations on the datasets, with optimal λ and z chosen as described
below. We then plotted the distribution of the final objective function attained. The results
for the Twitter dataset with 30 topics are shown in figure 3.1(a).

23

5400 5450 5500 5550 5600 5650 5700 5750
0

0.01

0.02

0.03

0.04

0.05

0.06

Fr
ac

tio
n

of
 In

itia
liz

at
io

ns
 L

an
di

ng
 W

ith
in

 O
bj

ec
tiv

e
Va

lu
e ±

 3

Objective Value

Distribution of Final Objective Value

(a) Distribution of the final objective function over 1000
random initializations

0 5 10 15 20 25 30 35 40
5395

5400

5405

5410

5415

5420

Number of Initializations Tried

Be
st

 O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

O
bt

ai
ne

d

(b) Objective function attained versus number of
initializations

Figure 3.1: Impact of initialization on final objective value obtained

As stated above, the algorithm performs l initializations and chooses the best one. In
order to see how this affects the objective function eventually reached, we plotted objective
function versus l, using the same dataset and same choices of k, z and λ. Such a plot
depends on the random initializations chosen at each step, but some fairly typical results
are shown in Figure 3.1(b)

3.2 Model Selection

3.2.1 Effects of Model Selection on Accuracy and Sparsity

Choice of λ and z greatly impacts the results of the algorithm. To see the impact of model
selection on the results of our algorithm, we plotted reconstruction error versus zero-norms
of H and W for various values of λ and z in Figure 3.2.

For all four data sets, λ has little effect on error while it is below a certain threshold.
Once it reaches that threshold, we see a rapid increase of error with λ until the error reaches
a plateau. This plateau occurs when the algorithm has begun to set W = 0, at which point
||X −WH||2F = ||X||2F . z has far less effect until it gets very low, at which point decreasing
z is also associated with a rapid decrease in reconstruction accuracy. Though it is not clear
in the figures, the lowest value of z checked is actually 0.1, not 0 (at z = 0, H is simply set
equal to zero, and the reconstruction error is equal to ||X||2F).

Perhaps more relevant than the reconstruction error is the NMI: how well our factoriza-
tion agrees with human annotations. The effect of λ and z on NMI is shown in Figure 3.3

Comparing this to Figure 3.2, we see that the NMI shows behavior opposite the error,

24

0
0.5

1
1.5

2
2.5

3

0
10

20
30

40
50

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

x 104

z!

||X
 −

 W
H

|| F2

(a) 20ng

0
0.5

1
1.5

2
2.5

3

0
2

4
6

8
10

2080

2100

2120

2140

2160

2180

2200

2220

2240

z!

||X
 −

 W
H

|| F2

(b) bbc

0
0.5

1
1.5

2
2.5

3

0

5

10

15

20
6600

6700

6800

6900

7000

7100

7200

7300

z!

||X
 −

 W
H

|| F2

(c) reuters

0
0.5

1
1.5

2
2.5

3

0

5

10

15

20
150

160

170

180

190

200

210

z!

||X
 −

 W
H

|| F2

(d) tdt2top30

Figure 3.2: ||X −WH||2F vs λ and z

25

0

1

2

3
0

10
20

30
40

50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

!z

NM
I

(a) 20ng

0
0.5

1
1.5

2
2.5

3
0

2
4

6
8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

!z

NM
I

(b) bbc

0

1

2

3

0
5

10
15

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

!z

NM
I

(c) reuters

0
0.5

1
1.5

2
2.5

3 0
5

10
15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

!z

NM
I

(d) tdt2top30

Figure 3.3: NMI vs λ and z

26

as might be expected. For low λ the NMI is relatively high. As we increase λ we eventually
reach a threshold, after which the NMI falls off to zero, reaching zero once W starts being
zeroed-out entirely. Very low z is also associated with a drop-off in NMI for precisely the
same data sets in which a sudden increase in error is associated with very low z.

What these test have shown is that we have a fairly wide window of λ and z to choose
from. Within this range the choice of λ and z has little effect on the error and the NMI.
Outside this range there is a great deterioration in performance.

Next we will see how model selection affects ||W ||0 (Figure 3.4). This test shows rather
more variation between data-sets than the previous two. The 20ng dataset shows a very
late drop-off in ||W ||0: we see little change until λ is quite large. In particular, the drop off
in ||W ||0 occurs around λ = 40, whereas the drop-off in NMI occurs around λ = 20. Thus,
there is no way to significantly decrease the zero norm of W without greatly diminishing
NMI. On the other hand, tdt2top30 shows a decrease in ||W ||0 for small values of λ. The
other two datasets lie in between.

Figure 3.5 shows the same test for ||H||0, and here we start to see some surprises. As
expected, z has a bigger effect on ||H||0 than on ||W ||0, with ||H||0 decreasing for smaller z.
As λ gets very large and W becomes the zero matrix, H becomes extremely dense. What
is surprising is that ||H||0 is quite sensitive to λ as well, showing decreases for even small
values of λ in all 4 tests. This is encouraging. The data on ||W ||0 suggested that some
datasets, such as 20ng, might not be suitable for sparse factorization: deterioration of NMI
sets in long before any appreciable decrease in ||W ||0. But in fact we see a decrease in ||H||0
before deterioration in NMI. So if we care about ||H||0 as well as ||W ||0, sparse NMI can
have appreciable benefits for all the datasets tested.

3.2.2 1-dimensional Corner Finding

One might expect that model selection would be a matter of taste. For applications where
sparsity is more important, one ought to choose a higher λ and lower z, and for applications
where accuracy is more important, one ought to choose a lower λ and a higher z. But our
previous results have shown that ||H||0, and sometimes ||W ||0, are sensitive to small values
of λ, whereas for small values of λ we see little effect on reconstruction error and sparsity.

This is a situation that occurs relatively frequently in signal processing with regular-
ization [8, 7]. In many signal processing applications, one wants to solve X = WH + ε
for W , where X is a signal detected, W is a signal produced by some natural process,
ε is noise, and H is a matrix depending on properties of the detector. This amounts to
minimizing ||X −WH||F over all choices of W , keeping H fixed. One often adds a regu-
larization parameter to decrease the effect of noise upon one’s solution, and one minimizes
||X −WH||2F + λ||W ||1 instead. In these applications it can be proven [8, 7] that the curve
||X −WH||2F versus ||W ||1, parametrized by one’s choice of λ, will have an L-shape, with
the vertical portion of the L corresponding to regions where innacuracies are dominated by
noise effects and the horizontal part corresponding to regions where inaccuracies are domi-
nated by oversmoothing. For most applications, one ought to choose the λ parameterizing
the corner of the L. Thus, detecting the corner of this characteristic L curve is a classic
procedure for model selection.

Our situation is a little different. First, we are interested in 0-norms rather than in 1-
norms. Second, we do not fix H, and we want to get H as sparse as possible. Nonetheless,
our situation is similar to the one in which the L-curve is traditionally applied, and it is
reasonable to explore L-curve ideas here as well.

First we try plotting the curve of ||W ||0 versus reconstruction error realized by our

27

0
0.5

1
1.5

2
2.5

3

0
10

20
30

40
50

0

0.5

1

1.5

2

2.5

x 105

!z

||W
|| 0

(a) 20ng

0
0.5

1
1.5

2
2.5

3

0
2

4
6

8
10

0

2000

4000

6000

8000

10000

!z

||W
|| 0

(b) bbc

0
0.5

1
1.5

2
2.5

3

0
5

10
15

20

0

0.5

1

1.5

2

2.5

3

3.5

4

x 104

!z

||W
|| 0

(c) reuters

0
0.5

1
1.5

2
2.5

3

0
5

10
15

20

0

0.5

1

1.5

2

2.5

3

3.5

x 105

!z

||W
|| 0

(d) tdt2top30

Figure 3.4: ||W ||0 vs λ and z

28

0
0.5

1
1.5

2
2.5

3

0
10

20
30

40
50

0

0.5

1

1.5

2

2.5

3

3.5

4

x 105

z!

||H
|| 0

(a) 20ng

0
0.5

1
1.5

2
2.5

3

0
2

4
6

8
10

0

1

2

3

4

5

x 104

z!
||H

|| 0

(b) bbc

0
0.5

1
1.5

2
2.5

3

0

5

10

15

20
0

0.5

1

1.5

2

x 105

z!

||H
|| 0

(c) reuters

0
0.5

1
1.5

2
2.5

3

0

5

10

15

20
0

1

2

3

4

5

6

7

x 105

z!

||H
|| 0

(d) tdt2top30

Figure 3.5: ||H||0 vs λ and z

29

algorithm, parametrized by choice of λ, fixing z = 1. The results are shown in Figure 3.6.
For one data set, tdt2top30, we see a classic L-curve. That is because, as mentioned earlier,
||W ||0 begins to fall before the reconstruction error blows up. For the other two data sets,
however, we do not see an L-curve.

But recall that a higher λ leads to lower ||W ||0 and lower ||H||0, and we care about both.
If we plot the total zero norm ||W ||0 + ||H||0, we get more promising results (Figure 3.7).
The most obvious difference is the spike in total 0-norm when λ gets very large, due to the
expected explosion in ||H||0. But if we look at just the first half of the plot, we do see an
L-curve (in fact in the tdt2top30 case we see an actual V, due to ||H||0 beginning to grow
earlier). I will refer to this corner in the left-hand section of the curve as “corner 1”, and
the other corner which occurs where ||H||0 begins to grow rapidly as “corner 2”.

We were unable to determine whether all matrices X would give rise to a curve with
these properties. But in those cases where there is such a curve, corner-detection is a good
method for model selection.

In order to find corner 1 without sampling too many choices of λ, we use a ternary
search algorithm. The algorithm starts by choosing λ−, parameterizing a point to the left
of corner 1, and λ+, parameterizing a point to the right of corner 1 but to the left of corner
2. Choosing such a λ− is easy: clearly λ− = 0 works, so that is what we do. As noted
above (section ??), if λ is greater than or equal to z ∗maxt ||Xt||1 then λ causes W to be
set to 0, so λ = z ∗maxt ||Xt||1 parametrizes a point to the right of both corners. Next, we
keep multiplying it by a < 1 until it no longer causes W to be zeroed out (meaning that is
it to the left of corner 2). One must not choose a so small that λ+ winds up to the left of
corner 1, but if one takes a too small, this step in the algorithm will take a very long time.
We have been using a = 3

4 .

Next, the algorithm performs a ternary search. We choose λ− < λA < λB < λ+. These
parametrize points q−, qA, qB, q+ in the (||X −WH||2F , ||W ||0 + ||H||0) plane. If the slope
between q− and q+ is greater than the slope between qA and qB, then qB must lie to the
right of the corner, so we may update λ+ = λB. Otherwise qA is to the left of the corner,
and we may update λ− = λA. We repeat this process until a stopping condition is reached.
At each step, the distance between λA and λB decreases by 33%, and at each step, the λ
parameterizing the corner is in (λ−, λ+), so this allows us to zoom in on the corner.

Figure 3.8 reproduces the 0-norms versus error curve from before, with the 0-norm and
error parametrized by the value of λ selected by this algorithm marked.

For λ, the error versus 0-norms curve parametrized by z also has nice corners, as shown
in Figure 3.9. So holding λ fixed, we may use an identical algorithm to find the optimal z.

3.2.3 2-dimensional Corner Finding

At this point, we have given algorithms for finding the optimal z with λ fixed and for finding
the optimal λ with z fixed. One obvious way to select both would be to fix z and find the
optimal λ, then fix that λ and find the optimal z, and alternate in this fashion until the
algorithm converges to some (λ, z). However, this algorithm is not guaranteed to converge
and frequently fails to find a good z or a good λ. Which λ appears optimal for a given z
depends heavily on z, and vice versa, so if a bad choice of z is made in the beginning, the
algorithm may fail entirely. In the following, we present an equally simple but somewhat
more robust algorithm for finding z and λ. We were unable to empirically characterize the
robustness of this algorithm because we have only 5 data sets, and we have not proven that
it works. Future research might include characterizing its robustness or developing a hybrid
algorithm which tries both the algorithm described below and the alternating one described

30

1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
x 104

0

2

4

6

8

10

12

14

16

18
x 104

||X−WH||F
2

||W
|| 0

(a) 20ng

2080 2100 2120 2140 2160 2180 2200 2220 2240
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

||X−WH||F
2

||W
|| 0

(b) bbc

6600 6700 6800 6900 7000 7100 7200 7300
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

||X−WH||F
2

||W
|| 0

(c) reuters

150 160 170 180 190 200 210
0

0.5

1

1.5

2

2.5

3
x 105

||X−WH||F
2

||W
|| 0

(d) tdt2top30

Figure 3.6: Plot of ||W ||0 versus ||X − WH||2F . Note that it is not typically an
L-curve. All calculations were done with z = 1.

31

1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
x 104

0.5

1

1.5

2

2.5

3

3.5
x 105

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(a) 20ng

2080 2100 2120 2140 2160 2180 2200 2220 2240
0

0.5

1

1.5

2

2.5

3

3.5
x 104

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(b) bbc

6600 6700 6800 6900 7000 7100 7200 7300
0

2

4

6

8

10

12

14

16

18
x 104

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(c) reuters

150 160 170 180 190 200 210
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 105

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(d) tdt2top30

Figure 3.7: ||W ||0 + ||H||0 versus ||X−WH||2F . Note that the left side approximaqtes
an L-curve. All calculations were done with z = 1.

32

1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
x 104

0.5

1

1.5

2

2.5

3

3.5
x 105

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(a) 20ng

2080 2100 2120 2140 2160 2180 2200 2220 2240
0

0.5

1

1.5

2

2.5

3

3.5
x 104

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(b) bbc

6600 6700 6800 6900 7000 7100 7200 7300
0

2

4

6

8

10

12

14

16

18
x 104

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(c) reuters

150 160 170 180 190 200 210
1

2

3

4

5

6

7
x 105

||X−WH||F
2

||W
|| 0 +

 ||
H

|| 0

(d) tdt2top30

Figure 3.8: Results of our 1-dimensional corner-finding algorithm. The black circle
represents the point parameterized by our algorithm’s choice of λ. It consistently lies
below the curve (sometimes far below) because we ran RRI on it with more iterations.
All calculations were done with z = 1.

33

1.92 1.925 1.93 1.935 1.94 1.945 1.95 1.955 1.96 1.965
x 104

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 105

||X − WH||F
2

||W
|| 0

(a) 20ng

2090 2100 2110 2120 2130 2140 2150 2160 2170 2180
1

1.5

2

2.5

3

3.5
x 104

||X − WH||F
2

||W
|| 0

(b) bbc

6660 6670 6680 6690 6700 6710 6720 6730 6740
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 105

||X − WH||F
2

||W
|| 0

(c) reuters

151 151.5 152 152.5 153 153.5
3.5

4

4.5

5

5.5

6

6.5
x 105

||X − WH||F
2

||W
|| 0

(d) tdt2top30

Figure 3.9: ||W ||0 + ||H||0 versus ||X −WH||2F for fixed λ and varying z. Note the
(somewhat) L-curve-like shape, which allow for selection of z in the same way we
select λ.

34

above and chooses the more reasonable of the two results (for example, choosing the one
that gives a solution with lower l2 norm in (||X −WH||2F , ||W ||0, ||H||0)-space).

The idea for this algorithm comes from inspection of Figure 3.10. All four of these
surfaces have two corners, one where ||X−WH||2F begins to increase rapidly and one where
||H||0 begins to increase rapidly. Analogously to the 1-dimensional L-curve, the former of
these corners is the spot where inaccuracy flips from being primarily due to noise versus
being primarily due to over-smoothing, and the tuple (λ, z) which parametrizes this point
is the one we would like to choose.

The second of the two corners is sometimes absent, as occurs with the Twitter data set
shown in Figure 3.11.

In order to find the former of the two corners, we begin by slightly generalizing the
algorithm given above for finding λ. Let γ : [0, 1] → R2

+ be any curve in the (λ, z)-plane,
and let a : R2

+ → R2 be the map from (z, λ) to (||X −WH||2F , ||w||0 + ||H||0) where W and
H are the solutions of the optimization problem for the given choice of λ and z. Then a ◦ γ
is a curve somewhere on the (||X −WH||2F , ||w||0 + ||H||0)-plane. We can use the ternary
search procedure described above to look for a corner along this curve. In the case where
γ is the straight path from (λ1, z) to (λ2, z), this reduces to the algorithm for finding the
optimal λ presented above.

In order to find σ, we first choose three points p1, p2, p3 in the (λ, z)-plane such that the
point parameterizing σ lies somewhere in the triangle with corner p1, p2, p3. For this step
we use guesswork, choosing points p1 = (λ+, z−), p2 = (λ+, z+), p3 = (λ−, z+), where λ−
and z− are very small (0 and 10−12, for example), z+ is very large (z+ = 4, for example),
and λ+ is chosen as in 1-dimensional corner finding. Next, we take each of the three sides in
turn. For each side with vertices pi, pj , we check two points pa and pb intermediate between
pi and pj . These parametrize points qi, qa, qb, qj on the (||X−WH||2F , ||W ||0+ ||H||0) plane.
As before, if the slope between qa and qb is more negative than the slope between qi and qj ,
then the corner, if one exists, is parametrized by a point between pi and pb, so we shrink
the side of the triangle, resetting pj = pb. Otherwise, the corner is parametrized by a point
between pa and pj , so we set pi = pa.

While we have not proven that this algorithm works, it is justified by the following
intuition: if there is a pronounced corner somewhere along the curve parametrized by the
line between pi and pj , the algorithm will find that corner with good accuracy. On the
other hand, if there is not pronounced corner, the algorithm will not find an un-pronounced
corner with any great accuracy, but it probably does not matter much if the algorithm
messes up since there is no good corner there anyway.

In Figure 3.12, we show the error and zero-norms parametrized by the duple (λ, z) chosen
by this algorithm for each of the data sets. This shows that the algorithm is reasonably
accurate.

Ultimately, we care more about the NMI than about the reconstruction error. Fig-
ure 3.13 shows the surface in NMI, ||W ||0, and ||H||0 parametrized by the choice of λ and
z. Again, the point parametrized by the λ and z chosen by our corner-finder is marked.
These plots show that the algorithm makes a reasonable choice.

3.2.4 Model Selection via Cross-Validation

Cross-validation is another common method of model selection. In this section, we discuss
how cross-validation might be used to choose λ and z in this context, but we ultimately
conclude that it is not the right method.

In cross-validation, we separate the data into two data sets: one to train the algorithm,

35

0

0.5

1

1.5

2

2.5

x 105

0

1

2

3

4
x 105

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

x 104

||W||0

Error versus Sparsity for 20ng

||H||0

||X
 −

 W
H

|| F2

(a) 20ng

0
2000

4000
6000

8000
10000

0
1

2
3

4
5

x 104

2080

2100

2120

2140

2160

2180

2200

2220

2240

||W||0

Error versus Sparsity for bbc

||H||0

||X
 −

 W
H

|| F2

(b) bbc

0

1

2

3

4

x 104

0
0.5

1
1.5

2
x 105

6600

6700

6800

6900

7000

7100

7200

7300

||W||0

Error versus Sparsity for reuters

||H||0

||X
 −

 W
H

|| F2

(c) reuters

0
0.5

1
1.5

2
2.5

3
3.5

x 105

0
1

2
3

4
5

6
7

x 105

150

160

170

180

190

200

210

||W||0

Error versus Sparsity for tdt2top30

||H||0

||X
 −

 W
H

|| F2

(d) tdt2top30

Figure 3.10: The surface parametrized by our choice of z and λ. Note the two corners.

36

Figure 3.11: For the Twitter.mat dataset the second corner (where ||H||0 grows
rapidly) seems to be absent. The black dots are the points sampled by our corner-
finder, and the magenta dot is the point ultimately selected.

0

5
x 105

0 1 2 3 4 5 6 7

x 104

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

||H||
0

||W||
0

||X
 −

 W
H

|| F2
|

37

0 0.5 1 1.5 2 2.5
x 105

00.511.522.533.54

x 105

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

x 104

||H||0||W||0

||X
 −

 W
H

|| F2

(a) 20ng

0
2000

4000
6000

8000
10000

0
1

2
3

4
5 x 104

2080

2100

2120

2140

2160

2180

2200

2220

2240

||H||0||W||0

||X
 −

 W
H

|| F2

(b) bbc

0
1

2
3

4
x 104

0

0.5

1

1.5

2

x 105

6600

6700

6800

6900

7000

7100

7200

7300

||H||0||W||0

||X
 −

 W
H

|| F2

(c) reuters

0

1

2

3

4

x 105

0
1

2
3

4
5

6
7

x 105

150

160

170

180

190

200

210

||H||0
||W||0

||X
 −

 W
H

|| F2

(d) tdt2top30

Figure 3.12: Results of our 2-dimensional corner-finding algorithm. The magenta
square represents the point parameterized by our algorithm’s choice of λ and z.

38

0

2

4

x 105
00.511.522.533.54

x 105

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

||H||0||W||0

NM
I

(a) 20ng

0

2000

4000

6000

8000

10000

0
1

2
3

4
5

x 104

0

0.2

0.4

0.6

0.8

1

||H||0||W||0

NM
I

(b) bbc

0

1

2

3

4

x 104

0

0.5

1

1.5

2

x 105

0

0.1

0.2

0.3

0.4

0.5

||H||0||W||0

N
M

I

(c) reuters

00.511.522.533.5
x 105

0

2

4

6

8

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||W||0||H||0

NM
I

(d) tdt2top30

Figure 3.13: Results of our 2-dimensional corner-finding algorithm. The magenta
square represents the point parameterized by our algorithm’s choice of λ and z.

39

and one to test the trained algorithm. If the algorithm performs well on the test data set,
then it has “learned the right things” and the model selected was a good one [9].

In our context, this works as follows: let X1, X2 be two matrices formed by removing
some of the rows of X. Factor X1 ≈ W1H1 and X2 ≈ W2H2. Then factor X2 ≈ Ŵ2H1,
holding H1 fixed and minimizing the objective function over all choices of Ŵ2. H1 is the
matrix of topic-word associations for the documents represented by X1. If X1 was big
enough, and if we made a good choice of λ and z, H1 ought to be close to the true matrix
of topic-word associations. That matrix of topic-word associations should still be correct
when we pass to factorizing X2. Thus, ||X2 −W2H2||2F should not be much smaller than

||X2 − Ŵ2H1||2F .

So a procedure for model selection via cross validation would consist of performing the
factorizations described above for various choices of λ and z, and choosing the λ and z that
produced the smallest difference diff = ||X2−Ŵ2H1||2F −||X2−W2H2||2F . In Figure ??, we

plot ||X2 − Ŵ2H1||2F for various choices of λ using the Twitter data set for X where X1 is
80% of the rows randomly selected and X2 the remaining 20%. This result is typical: diff
grows monotonically with λ. Therefore, model selection via cross-validation will always
choose λ = 0. Since our intent in this project is to find sparse solutions, cross-validation is
not useful to us for model selection.

3.3 NMI Versus Reconstruction Error

One drawback of the approach to model selection presented above is that it chooses a model
based on the sparsity and reconstruction error of the solutions it obtains, whereas what we
are really interested in is the sparsity and NMI of the solutions obtained. Our goal is
primarily to compute topic classifications which agree with what a human would decide,
not just to find a factorization with low reconstruction error. Faced with a data set of blog
content without annotations, we cannot use NMI to help us choose a good model and must
use the reconstruction error instead. Thus, it is important to know how well reconstruction
error is correlated with NMI. In particular, it is possible that sparser solutions tend to be
more intuitive (higher NMI) than less sparse solutions ceteris paribus. If this is so, then
choosing our model based on reconstruction error rather than NMI might result in choices
of λ and z that are too small.

In order to resolve this question, we used the data computed earlier (reconstruction
errors and NMI’s) for various choices of λ and z and computed the correlation between
NMI and ||X −WH||2F on this data for each of the four annotated datasets. There are
some methodological issues with doing this. If we find that W = 0 for λ very large, then
NMI = 0 and ||X −WH||2F attains its maximum. Thus, the more large values of λ we try,
the stronger the (negative) correlation between NMI and reconstruction error will appear to
be. In order to get rid of this arbitrariness, we sampled z evenly from 0.1 to 3 and sampled
λ evenly from zero to a very high number. We then threw out all the data points for which
W was set to 0 by the algorithm. This choice is justified by the following considerations:
since what is at issue here is the validity of our approach to model selection, we are only
interested in the correlation between NMI and reconstruction error over plausible model
parameters, and it is implausible to choose λ so large that W is set to 0. On the other
hand, all values of λ below λ+ are plausible for certain applications (if one has a sufficiently
large data set and sufficiently little memory at one’s disposal).

The results are shown in Figure 3.15. NMI and ||X−WH||2F were linearly correlated in
the data sets with R2 values x,x,x, and x. tdt2top30, for which there were many points with

40

Figure 3.14: ||X2 − Ŵ2H1||2F versus λ

0 5 10 15 20 25 30 35 40
3750

3800

3850

3900

3950

4000
Reconstruction Error vs. Lambda using H learned on a subset

λ

F
ro

be
ni

us
 e

rr
or

 s
qu

ar
ed

41

Table 3.1: R2 values for the correlation between NMI’ and ||H||0, ||W ||0 and ||H||0 +
||W ||0 for each of the four datasets
bfdataset NMI’ versus ||W ||0 NMI’ versus ||H||0 NMI’ versus||W ||0 + ||H|0
20ng 0.0104 0.000477 0.0027
bbc 0.0014 0.0348 0.0195
reuters 0.00130 0.0888 0.0615
tdt2top30 0.0157 0.00100 0.00350

Table 3.2: R2 corrleations bewteen NMI and sparsity, correcting for error

high error but also high NMI, is a clear outlier. The relatively high correlation between
NMI and reconstruction error may be due more to a clustering effect than to a linear
relationship: For λ below a threshold, NMI is more or less constant and high and error is
more or less constant and low, while above that threshold, NMI is more or less constant and
low and error is more or less constant and high. Thus, the data points are clustered around
two centers, which makes it easy to fit a line to them. Nonetheless, this data provides
some justification for using reconstruction error to determine model selection rather than
searching for another proxy for NMI.

At the beginning of the study, it was hypothesized that ||H||0 and ||W ||0 might be
negatively correlated with NMI after controlling for reconstruction error, since sparser so-
lutions to the factorization problem might be more intuitive. In order to test this, we went
through each data point and subtracted the NMI that we would expect from the linear
relationship with the reconstruction error from the actual NMI of that datapoint. We call
this quantity NMI ′. We then checked for a linear correlation between NMI ′ and ||H||0,
||W ||0, and ||W ||0 + ||H||0. Table 3.1 shows the results of this calculation. The correlations
were quite low, which suggests that sparse solutions do not tend to agree more with human
annotations. However, this result is weakened by the fact that only linear relationships were
checked.

3.4 Memory Usage Considerations

One other consideration which might be relevant to model selection is the amount of memory
required to run the algorithm. One of the main points of enforcing sparsity is to decrease
memory usage. But we are not only interested in the memory required to store and perform
calculations with the factorization ultimately found by the algorithm; we also care about
how much memory is required to run the algorithm in the first place.

Larger values of λ cause the sparsity of W and H to drop faster and stay down during
the optimization. So if memory usage during the computation is very important, we might
expect to want a higher λ and a lower z than the ones chosen using corner-finding.

Unfortunately, it requires no less memory to run our sparse RRI algorithm than is
required to perform RRI without 1-norm regularization and with H unconstrained. The
reason for this is the initialization of W . Our current initialization procedure initializes W
as an extremely dense matrix. The amount of memory required to run the algorithm is
therefore dominated by the amount of memory required to store and manipulate this dense
W during the first iteration of RRI, during which the values of W and H are no different
than if we were using no 1-norm regularization and no constraint on H. Initializing W as a
sparse matrix resulted in the algorithm failing to find a factorization, giving nearly as low

42

1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

||X − WH||F
2

N
M

I

(a) 20ng: NMI ≈ (−4.81 × 10−4)||X −
WH||2F + 9.61, R2 = 0.931

2080 2100 2120 2140 2160 2180 2200 2220 2240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

||X − WH||F
2

N
M

I

(b) bbc: NMI ≈ (−4.37 × 10−3)||X −
WH||2F + 9.76, R2 = 0.859

6600 6700 6800 6900 7000 7100 7200 7300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

||X − WH||F
2

N
M

I

(c) reuters: NMI ≈ (−2.13 × 10−4)||X −
WH||2F + 1.77, R2 = 0.280

150 155 160 165 170 175 180 185 190 195 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||X − WH||F
2

N
M

I

(d) tdt2top30: NMI≈ (−1.06×10−2)||X−
WH||2F + 2.24, R2 = 0.673

Figure 3.15: Correlation between NMI and reconstruction error.

43

a value of the objective function as was found when W was initialized densely (initializing
H densely, on the other hand, did not confer significant benefits).

Therefore, the most promising avenue for reducing the memory usage of the algorithm
is to find a better initialization procedure. We believe that using model selection to reduce
memory usage would be premature; significant gains in memory usage will not be attained
until a better initialization procedure has been found, and a different initialization procedure
might greatly alter the effects of model selection on memory usage.

44

Chapter 4

Evaluation of Overall Performance

In this chapter we evaluate the overall performance of our sparse NMF algorithm together
with model selection, by comparing it with the sparse NMF algorithm of Patrik Hoyer and
by running some cross validation tests.

4.1 Comparison with Hoyer’s Algorithm

Patrik Hoyer developed a sparse NMF algorithm in 2004 [11] that builds on top of Lee &
Seung’s 2001 NMF algorithm by enforcing sparsity constraints onto each column of W,H
after Lee & Seung’s update steps have been computed. The sparsity constraint is enforced
by a projection algorithm which projects each constrained vector w onto the hyperplane∑
wi = l1, and then projects this point onto a hypersphere with some desired l2 norm.

It is not clear whether this projection guarantees that the projected vector minimizes the
objective function over all vectors in the constraint set.

Hoyer’s algorithm is similar to Sparse RRI in that it also requires a sparsity parameter.
His algorithm takes a sparsity parameter s(w) and s(h) that determines what Hoyer sparsity
each column of W or column of H, respectively. Where we define the Hoyer Sparsity of a
vector x as

s(x) =

√
n− ||x||1||x||2√
n− 1

where n = dim(x).

Hoyer originally developed his algorithm to generate parts-based basis images for
datasets where non-sparse NMF did not perform well, however we compare it to Sparse
RRI on textual data. We summarize these results in Table 4.1. There are several observa-
tions we can make:

1. For Hoyer’s algorithm as well as ours there is an optimal sparsity parameter, which
can be found using slope-based methods.

2. Sparse RRI achieves better reconstruction error than Hoyer’s algorithm for a given
sparsity for small data sets with relatively high initial density. (TDT, BBC)

3. Hoyer’s algorithm seems to perform slightly more consistently for larger and sparser
datasets (20NG, Reuters). Sparse RRI seems to behave strangely for particular values
of λ.

45

4. Neither algorithm consistently achieves a better NMI than the other, for certain
sparsity parameter values both algorithms achieve similar NMI values.

These results give us the confidence to say that sparse Sparse RRI is a good solution
to the sparse NMF problem, but is not significantly better than existing sparse NMF algo-
rithms. The encouraging result that can be seen in Table 4.2 is that Sparse RRI seems to
use less memory and run faster than Hoyer’s RRI algorithm.

4.2 Cross Validation

As a final check that the algorithm is giving plausible results, we do a cross-validation
check on each of the data sets. For each one we randomly shuffle the rows of X (so that
all permutations are equally likely), and let Xj , j = 0, ..., 20, be the first 80 + j% of the
rows. We choose optimal z and λ for X0 and factor X0 ≈ W0H0. Keeping the same λ we
then factor Xj ≈ WjH0 for each J and let ej = ||Xj −WjH0||2F . do this for 3 shufflings.
Figure 4.1 shows the results of this test. If ej − e0 were very large, especially if this were
so for small j, this would suuggest that our algorithm’s choice of H is overly sensitive to
small changes in X, which would suggest that H is an implausible topic-word associataion
matrix. But such troubling behavior does not occur.

46

Reconstruction Error NMI
20NG dataset (89 topics, 19928 docs, 18607 words, 0.39% density)

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98
x 104

0

10

20

30

40

50

60

70

80

90

100

||W
|| 0/M

N

||X−WH||F

20ng dataset, 4avgs

RRI NMF Sparse
Hoyer

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

NM
I

!, hoyer sparsity " [0,0.8]

TDT dataset (30 topics, 9394 docs, 6545 words, 1.66% density)

182 184 186 188 190 192 194 196 198 200
0

1

2

3

4

5

6

7

8

9

10

||W
|| 0/N

||X−WH||F

tdt2top30 datasetsize=9394simplex projection numavgs=10 numtopics=10

RRI NMF Sparse
Hoyer

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ, hoyer sparsity*2

NMI

RRI NMF
Hoyer

Reuters dataset (10 topics, 7285 docs, 18221 words, 0.25% density)

6600 6700 6800 6900 7000 7100 7200 7300
10

20

30

40

50

60

70

80

90

100

||W
|| 0/N

||X−WH||F

RRI NMF Sparse
Hoyer

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

NM
I

!, Hoyer Sparsity " [0,0.8]

RRI NMF
Hoyer

BBC dataset (5 topics, 2225 docs, 9635 words, 1.34% density)

2080 2100 2120 2140 2160 2180 2200 2220 2240
0

10

20

30

40

50

60

70

80

90

100

%
 N

N
Z(

W
)

||X−WH||F

BBC topics=5

RRI NMF Sparse
Hoyer

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

!, Hoyer Sparsity " [0,0.8]

NM
I

Table 4.1: Comparison of Sparse RRI and Hoyer’s sparse NMF algorithm on various
text datasets.

47

Average (over iterations) Number of Entries in W, Run time
BBC dataset

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
x 105

!, Hoyer Sparsity " [0,0.8]

Av
g

#E
le

m
en

ts
 in

 W

RRI NMF Sparse
Hoyer

0 5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

!, Hoyer Sparsity " [0,0.8]

ru
n

tim
e

(s
ec

)

RRI NMF Sparse
Hoyer

TDT dataset (The Average for RRI remains around 280,000)

0 1 2 3
0

2

4

6

8

10
x 106

!, Hoyer Sparsity " [0,0.8]

Av
g

#E
le

m
en

ts
 in

 W

RRI NMF Sparse
Hoyer

0 1 2 3
0

10

20

30

40

50

!, Hoyer Sparsity " [0,0.8]

ru
n

tim
e

(s
ec

)

RRI NMF Sparse
Hoyer

Table 4.2: Comparison of space & time requirements of Sparse RRI and Hoyer’s
sparse NMF algorithm.

48

0 2 4 6 8 10 12 14 16 18 20
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 104

j

e j

(a) 20ng

0 2 4 6 8 10 12 14 16 18 20
1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

j
e j

(b) bbc

0 2 4 6 8 10 12 14 16 18 20
5200

5400

5600

5800

6000

6200

6400

6600

6800

j

e j

(c) reuters

0 2 4 6 8 10 12 14 16 18 20
120

125

130

135

140

145

150

155

160

j

e j

(d) tdt2top30

Figure 4.1: Results of the cross-validation test applied to the four datasets. The three
lines correspond to three different shufflings of the data. Error rises only slightly, and
very regularly, as we include more and more data.

49

Chapter 5

Introduction to MGGCM

In this chapter we introduce the algorithm we use to determine who is important online.

5.1 Mathematical Background

One key aspect of online communities that businesses would like to understand is influence.
Who is most influential in a community? Who originates ideas and who propagates them?
By determining the most influential people in an online community, businesses can identify
who they should target for costly marketing interventions (such as distribution of free
products to generate buzz). This knowledge would make marketing strategies more effective
and efficient.

5.1.1 Granger Causality

To approach this problem we must first determine what we mean by causal influence. How
can we characterize influence in an online community to identify who is most influential?
Past efforts have focused on hyperlinks to illustrate influence: if person A links to person
B’s blog or website, person B is expected to exert an influence on person A. But what
happens if we believe that people can be influenced more subtly?

Consider the following example of a more subtle form of influence. I discover a new
restaurant that I want to try online. I read a review of the restaurant on a food blog, and
the author of this blog raves about the duck confit at the restaurant. When I later go to
the restaurant, I naturally want to try the duck confit. Afterward, I myself write a review
of the restaurant on my blog and write about the duck confit. I do not link specifically to
the food blog that I originally read, but I was clearly influenced by the other blogger. In
this case a comparison of the actual content of each blog would suggest that the content of
our blogs is correlated. The fact that content about the duck confit appeared on the other
blog before it appeared on mine suggests that I was influenced by the other blogger.

5.1.2 Methodology

The sort of reasoning above was made explicit by the Nobel prize winner Clive Granger
in order to form a mathematical definition of influence. Applied to our case it would be
defined as follows:

51

Granger Causality: A group of bloggers is said to influence blogger Bi
if their past collective content (i.e. their past blog posts) is predictive of the
future content of blogger Bi more so than the past content of blogger Bi alone.

In other words, we determine causal influence by examining the content of blogs while
considering the temporal order of events. Referring back to the past example, we would see
that I was influenced by the other blog because my current content reflects the other blog’s
past content. This definition allows us to capture influence that is not immediately apparent.
We can thus determine who is most influential in guiding or shaping a discussion, rather
than merely determining who is most cited in a discussion as past efforts at characterizing
influence have done.

To quantify the notion of one blogger’s content being predictive of another’s we must
model blog content over time mathematically. Recall that the content of a blog post may be
represented as a vector in Rd+, where d is the size of our dictionary. Thus to any bloggerBi we
may associate a time series {Bt

i} ⊆ Rd+, where Bt
i is the vector representation of all content

produced by blogger Bi during time-step t, treated as a single document. Predicting the
content of Bi in terms of the past content of Bj consists of solving a multivariate regression
with response variable Bt

i and explanatory variables {B1
j , ...,B

t−1
j }.

5.1.3 Our Approach

Given time-series {Bt
i} corresponding to a community of bloggers B1, ..., Bl we wish to

output a weighted directed graph whose vertices are the bloggers, with an edge from blogger
Bj to blogger Bi if and only if Bj influences Bi, and with a weight on each such edge
quantifying the degree of influence which Bj has over Bi.

To construct this output graph, we process each blogger one at a time. For blogger Bi,
we attempt to predict his current content at time t, Bt

i , in terms of the past content of the
other bloggers. We use a variable selection method that determines which variable groups
or bloggers are relevant in predicting the response variable Bt

i , and the selected groups will
tell us what edges or causal relationships should be included in the output graph. The
regression coefficients for each pair of bloggers will determine the weight to be put on the
edge between them.

There are two key features that we would like our variable selection procedure to have:

1. The selection process should select groups instead of individual content variables. If
blogger Bj influences blogger Bi, we want to say that the entirety of the past content
of blogger Bj predicts the content of blogger Bi, not just the occurrence of a particular
word in the past content of blogger Bj . We thus treat the past content of bloggers as
groups of variables that must be selected together.

2. The selection process should be made simultaneously for each of the K word frequen-
cies of Bt

i . In other words, if we select blogger Bj as influencing blogger Bi, then we
expect the past content of blogger Bj to predict the entirety of the content of blog-
ger Bi and not just predict the frequency of a certain word in blogger Bi’s current
content.

With these two features, our method should faithfully reproduce the Granger causal
influence relations amongst. We will refer to the algorithmic instantiation of the above as
Multivariate Group Granger Causal Modeling (MGGCM). In order to implement MGGCM,
however, we still need to detail a simultaneous group variable selection procedure.

52

5.1.4 Multivariate Group Orthogonal Matching Pursuit (MGOMP)

MGOMP is a simultaneous group variable selection procedure devised by Aurélie Lozano,
Grzegorz Świrszcz and Naoki Abe [2] which performs multivariate regression with variable
group selection.

For our case, we will run the MGOMP algorithm for each blogger Bj to determine which
other bloggers have a causal influence on blogger Bj . We let Y be the content of blogger
Bj that we want to predict. The variable groups are sets Gi = {B1

i ,B
2
i , ...B

τ−1
i }. XG is a

matrix of explanatory variables in group G. A will be the set of groups selected to have an
influence on blogger Bj .

The Algorithm

1. Set Y =

Bτ
j

Bτ−1
j
...
Bd
j

2. Initialize variables: Set A = ∅, WA = 0

3. Calculate initial residual: R = Y −XAWA

4. While ||R|| > tolerance

(a) Variable selection:

i = arg min
k

min
WGk

||R−XGkWGk ||
2
fro

(b) Update variable set: A = A ∪ Gi
(c) Update residual: R = Y −XAWA

end while

Initially, we say that we have selected no groups and the regression coefficient matrix
is the zero matrix. Then, for as long as the residual is greater than some tolerance that
we have set, we determine which group of variables explains the most of the remaining
residual. We then select that group, update the selected variable set and residual, and then
repeat the selection step if the residual is still greater than the tolerance. Since we select the
optimal group to reduce the residual at every iteration, we say that MGOMP is a greedy
algorithm.

Stopping the algorithm before all groups have been included in A ensures that not too
many variable groups are selected (we might expect that any explanatory variable, so long as
it varies somewhat, no matter how unrelated it actually is to the predicted variable, might be
able to decrease the residue infinitesimally. Including the stopping criterion prevents this).
The greediness of the algorithm avoids problems with correlations between explanatory
variables. Suppose that Ba and Bb are both influenced by Bc, and that Bb does not
influence Ba, and that we are trying to predict Ba. Then the explanatory variables Bb and
Bc are correlated, so that both Bb and Bc will be correlated with Ba. If we try to predict Ba,
MGOMP will select Bc first. On the next iteration it will not select Bb, since Bc has already
been selected, and Bb will not predict any content of Ba that is not already predicted by Bc.
Thus MGOMP ought to ameliorate the problems due to correlations between explanatory
variables.

53

5.1.5 Kernelization

To implement MGOMP, we actually use a kernelized method which is more efficient than
the algorithm detailed above. For very high-dimensional problems, kernelization can be
beneficial to reduce the problem to a lower-dimensional one.

In our case, X ∈ R(τ−d)∗dKG and Y ∈ R(τ−d)∗K, where τ is the number of observations
or time steps, d is the lag, K is the number of words in our dictionary, and G is the number
of bloggers in our network. Since we expect that τ − d << dKG, kernelization is a good
choice since we can shift our problem from dKG dimensions to τ − d dimensions.

The Kernelized Algorithm

1. Set Y =

Bτ
j

Bτ−1
j
...
Bd
j

2. Precompute: KGi = XGiX

T
Gi for i = 1, . . . , G

3. Precompute: FGi = I −KGi(KGi + λI)−1 for i = 1, . . . , G

4. Initialize variables: Set A = ∅, K = 0 ∈ R(τ−d)∗(τ−d)

5. Calculate initial residual: R = Y

6. While ||R|| > tolerance

(a) Variable selection:
i = arg min

k
||FGkR||

2
fro

(b) Update variable set: A = A ∪ Gi
(c) Incorporate chosen kernel: K = K +KGi

(d) Update residual: R = I −K(K + λI)−1Y

end while

Because we are working in a much lower dimension, the kernelized algorithm should be
much faster than the original proposed algorithm. In addition, we no longer have to find
the optimal W for each blogger during each iteration of the selection process, which can be
a difficult calculation. Thus, for our implementations of MGOMP when applied to large
data sets such as real Twitter data, we use the kernelized version of MGOMP.

54

Chapter 6

Stopping Criteria for MGOMP

6.1 Testing MGGCM on Simulated Data

Before applying our algorithms to real-world data, we want to test our methods on simulated
data. To produce these simulations, we first generate an underlying true blogger network
structure. This structure can be represented as a G ∗ G adjacency matrix where the (i, j)
entry represents the influence that blogger Bi exerts on blogger Bj . This G ∗G adjacency
matrix is what we hope our MGGCM algorithm will recover as its output. From this, we
use a Vector Auto-Regression (VAR) model [19] to generate the simulated data. If Bt is the
vector of all bloggers’ content at time t, then a VAR model is expressed as the following:

Bt = A1 ∗Bt−1 + . . .+ Ad ∗Bt−d + noise

Al for lag l = 1, . . . , d is a coefficient matrix that explains the relationship between
bloggers. Al is only non-zero where the associated edge in the G ∗ G adjacency matrix is
also non-zero, so our model will reflect the underlying true blogger structure. We randomly
generate the initial content at time 0 and the noise values at each step, and we apply the
model to the content at time step t− 1 to find the content at time step t.

We then run the MGGCM algorithm on the simulated data to see if we can recover
the true structure of the blogger network. We compare the output of our algorithm to
the underlying randomly generated structure and use three statistical measures of variable
group selection accuracy:

1. Precision

P =
|{relevantgroups} ∩ {retrievedgroups}|

|{retrievedgroups}|

2. Recall

R =
|{relevantgroups} ∩ {retrievedgroups}|

|{relevantgroups}|

3. Harmonic Mean of Precision and Recall

F1 =
2PR

(P +R)

In this series of tests, we set the number of bloggers G = 20, the number of words
K = 10, the lag d = 5, and the number of time steps τ = 100.

55

6.1.1 Preliminary Results

We ran the MGGCM code on 20 sets of simulated data and averaged the evaluations
measures to come up with the following results.

Method Precision Recall F1

MGGCM .4088 .8957 .5609

While the algorithm works with rather high recall, the precision is relatively low, which
in turn leads to a low F1 value. This implies that MGGCM does well in choosing groups
that are relevant, but it also retrieves many groups that are irrelevant. If we are able to find
a better stopping criterion to the selection process, then we should find that the precision
and F1 will increase.

6.1.2 Oracle Estimate

In order to test the hypothesis that it suffices to find a good stopping condition in order to
make the algorithm perform well, we use an oracle estimate. Because we know the in-degree
of each blogger in the true randomly generated influence graph, we can alter the MGGCM
code to include an oracle estimate with this information. Thus, the selection process will
stop once it has chosen as many groups as the oracle estimate allows for each individual
blogger. The oracle does not tell the algorithm which groups to select; the oracle merely
tells the algorithm when to stop for each blogger. Adding an oracle estimate thus stops the
selection process prematurely when compared to the normal MGGCM code. The results
averaged over 20 sets of simulated data are shown below.

Method Precision Recall F1

MGGCM .4088 .8957 .5609
Oracle Estimate .9656 .8957 .9292

Adding an oracle estimate to our algorithm greatly increases the precision and F1 value
while leaving recall the same. This implies that our algorithm does a good job at choosing
groups initially, but often chooses too many groups when the stopping criterion is the
residual falling below the tolerance level. Thus, if we find an appropriate stopping strategy
for our MGGCM algorithm, we will have a very good way to identify the underlying causal
relationships in a blogger network.

Of course, we cannot use an oracle estimate in the real world since we have no way to
determine how many bloggers should be chosen as influential. However, real data might
be less in need of one. In our simulations, it is not uncommon for a blogger to have no
influencers, while this should be rarer in Twitter data. Also, because our simulations are run
on very small networks of bloggers with relatively few edges in the causal influence graph,
a small number of errors in the selection process can have a large effect on precision and
recall values. These problems would disappear when looking at larger networks of bloggers.

6.2 Stopping Conditions for MGOMP

For real world applications we must find a stopping criterion for MGOMP which uses no
knowledge of an underlying structure.

56

6.2.1 Residual Plots

For inspiration, we plot the residuals that are calculated at each step of the selection process.
Examples of these residual plots on simulation data are 6.1 and 6.2.

Heuristically, we can see which groups we hope that the algorithm selects for each figure.
In Figure 6.1, we hope that the algorithm will select blogger 15 as an influencer as that is
the primary and only group that lowers the residual significantly. In Figure 6.2, we hope
that the algorithm selects bloggers 3 and 7 as these correspond to the two significant dips
in the residual.

Because MGOMP is a greedy selection algorithm, it will select the group that has the
least residual in a given iteration. While this works well for the examples with one or two
influencers for the first iteration, this is not the behavior that we want for the example with
no influencers, nor is it guaranteed to correctly select the second influencer in the case of
two influencers during the second iteration.

6.2.2 Threshold Criterion

A group should be selected if and only if it explains a significant portion of the remaining
residual; otherwise, we want the algorithm to terminate. This can be thought of as including
a group if and only if the residual when selecting that group is lower than a threshold
multiplied by the average residual of selecting any other group. Assuming that we have G
bloggers, we modify the selection step as follows:

if

if min
WGj

||R−XGjWGj ||2fro < threshold ∗ 1

G

G∑
k=1

min
WGk

||R−XGkWGk ||
2
fro

then

A = A ∪ Gj

This is equivalent to adding a group as an influencer if and only if it deviates substan-
tially from the mean in terms of its explanatory power. When applied to the simulation
data with the same parameters as above and letting the threshold = .825, we find that this
method is very successful.

Method Precision Recall F1

MGGCM .4088 .8957 .5609
Oracle Estimate .9656 .8957 .9292

Threshold .9227 .8181 .8605

Adding a threshold criterion maintains a very high precision for the algorithm while not
losing too much in recall. This seems like a good solution to our selection problem; however,
we question its applicability to non-simulation data. Figures 6.1 and 6.2 show how nicely
the simulation data behaves, and we have little reason to think that real-world data would
so clearly reveal who is influencing a given person.

57

0 5 10 15 20
0

2

4

6

8

10

Blogger Number

R
es

id
ua

l

Figure 6.1: Residual Plot of Simulation Data for a Blogger with One Influencer

58

0 5 10 15 20
0

5

10

15

Blogger Number

R
es

id
ua

l

Figure 6.2: Residual Plot of Simulation Data for a Blogger with Two Influencers

59

6.2.3 Model Selection Criterion

An alternative to stopping the algorithm is to let the algorithm run for a given amount of
time, examine the results at various time steps, and artificially pretend that we stopped
the algorithm at an earlier step and use those results to continue. Since the algorithm
gets to see what would happen if it keeps selecting more variables, it has access to more
information when deciding which explanatory variables to ultimately include. To do this,
we calculate a model selection criterion, modsel, at each iteration of the algorithm. We let
the algorithm run for some maximum number of iterations, and then we find the iteration
at which the modsel attains its minimum value and throw out all calculations performed at
later iterations. We define modsel as the following:

modsel[i] = log(
1

G
min
k

min
WGk

||R−XGkWGk ||
2
fro) + δ ∗ log(n)

n
∗ df[i]

where δ is a parameter, n is the number of data points used, and df[i] is the number
of non-zero regression coefficients at iteration i divided by the number of words in our
dictionary K.

Intuitively, the first term of the model selection criterion weighs the strength of the
approximation while the second term weighs the sparsity of the solution. Thus, when δ is
small, we expect MGGCM with model selection to perform identically to MGGCM without
model selection because the model selection criterion is minimized when the residual is
smallest, which will happen when the residual is smaller than the stopping criterion, as
occurs in the normal MGGCM algorithm. When δ is very large, we expect the algorithm to
save information from only the first iteration since the sparsity of the regression coefficient
matrix is the dominating factor. We experimented with different values of δ to determine
how best to vary the weighting of these two conflicting priorities. 6.3 displays the results of
varying δ for an algorithm implementing model selection applied to simulation data with
the same parameters as above.

In all three tests, we see that as we increase δ, the precision of the algorithm increases.
This is to be expected since the model selection criterion will stop the MGGCM algorithm
before it normally terminates. Since the MGGCM algorithm already has high recall but low
precision, we know that it is selecting the correct groups while also selecting extraneous,
non-relevant groups after it has selected the correct groups. By stopping the selection step
earlier, we expect that the algorithm will select fewer extraneous groups. Unfortunately,
we also see a decrease in recall as we increase δ in all three graphs. Thus, even though the
precision is increasing, the model selection criterion is not always stopping the algorithm
correctly; sometimes the model selection criterion stops the selection process even if the
algorithm has not yet selected the correct groups.

Ideally, we hope that the precision will continue to increase up to a point without any
loss in recall. Figure 6.4(c) illustrates this desired behavior well: the precision can be raised
over 10 points before the recall starts to suffer. Similarly, we see in 6.4(a) and 6.4(c) that
the increase in precision that we can achieve outweighs the loss in recall since the F1 value
steadily increases as we increase δ. Unfortunately, this behavior is not typical across all
simulations. In Figure 6.4(b), we see that experimenting with δ has a marginal effect on
the F1 value. 6.4(a) and 6.4(c) that the increase in precision that we can achieve outweighs
the loss in recall since the F1 value steadily increases as we increase δ. Unfortunately, this
behavior is not typical across all simulations. In Figure 6.4(b), we see that experimenting
with δ has a marginal effect on the F1 value.

Regardless of the inconsistent behavior in our experiments varying δ, adding the model

60

Figure 6.3: MGOMP performance on three simulated data sets for varying δ (G = 20,
K = 10, d = 5, τ = 100)

8 9 10 11 12 13 14 15
0.4

0.5

0.6

0.7

0.8

0.9

1

Delta (Increments of 0.1)

Precision
Recall
F1

8 9 10 11 12 13 14 15
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Delta (Increments of 0.1)

Precision
Recall
F1

8 9 10 11 12 13 14 15

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Delta (Increments of 0.1)

Precision
Recall
F1

61

selection criterion to the algorithm does improve its overall performance as measured by
F1 value. The following table compares the results of using the model selection criterion to
the other algorithms discussed across 20 simulations. For these tests δ was held constant
at 12.8.

Method Precision Recall F1

MGGCM .4088 .8957 .5609
Oracle Estimate .9656 .8957 .9292

Threshold .9227 .8181 .8605
Model Selection .6013 .7044 .6473

Even though adding the model selection criterion is not as effective as adding an oracle
estimate or a threshold criterion, model selection still improves the MGGCM algorithm
significantly on these simulations and appears to have the most applicability to more general
cases, specifically real-world data, since it does not depend on the niceness of the data or
any knowledge of an underlying structure.

Applying the model selection criterion to simulations with other parameters, however,
leads to more mixed results. We repeated our above experiments varying δ with the same
parameters, except that we increased the number of bloggers G to 40. 6.4 shows the results.

While Figure 6.5(a) displays behavior very similar to the simulations with G = 20,
Figure 6.5(b) casts doubt on the effectiveness of the model selection criterion. This figure
reveals that in some cases, the implementation of the model selection criterion can actually
be detrimental to the performance of the algorithm since the F1 value decreases as we
increase δ (remember that MGGCM with model selection performs identically to MGGCM
without model selection when δ is small). On the other hand, we note that the F1 value in
Figure 6.5(b) starts off high, and so we would expect it to be hard to make improvements.
In Figures 6.5(a) and 6.5(c), we see that the F1 value starts low, and we can improve it
with the appropriate choice of δ for the model selection criterion.

The model selection criterion shows promise in improving the stopping criterion during
the selection process, but further research should be done. More tests are needed to verify
the applicability of the model selection criterion to other data sets, and more investigation
is needed to determine how best to optimize the choice of δ.

62

Figure 6.4: MGOMP performance on three simulated data sets for varying δ (G = 40,
K = 10, d = 5, τ = 100)

8 9 10 11 12 13 14 15 16 17 18
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Delta (Increments of 0.1)

Precision
Recall
F1

8 9 10 11 12 13 14 15 16 17 18
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Delta (Increments of 0.1)

Precision
Recall
F1

8 9 10 11 12 13 14 15 16 17 18
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Delta (Increments of 0.1)

Precision
Recall
F1

63

Chapter 7

Applying MGGCM to Twitter

7.1 Difficulties Working with Twitter Data

After testing our algorithm on simulation data, we want to see how MGGCM performs
on real-world Twitter data. The Twitter data we used consists of tweets of 1000 bloggers
spanning 2 months. The bloggers selected were those users on Twitter who mentioned
the word IBM the most frequently from May 22, 2010 to July 22, 2010. This set of tweets
contains more than 7500 unique words when parsed; if we were to attempt to apply MGGCM
directly to this data set, the code would use over 1 terabyte of memory since each tweet
would be represented as a vector over the entire dictionary of words. Thus, we need a way
of compressing the information included in each document or tweet to make the application
of MGGCM to Twitter data feasible.

7.1.1 Integration of Topic Modeling

Rather than attempt to use the full dictionary of words, we use the techniques of the
topic modeling project to enable us to apply MGGCM to our Twitter data. The NMF
algorithm factors our Twitter data X into matrices W and H, where W is the document-
to-topic association matrix. When we use the rows of W instead of the corresponding rows
of X in our algorithm to represent the content of our bloggers, we effectively compress
the information from X and make the problem of determining influence between bloggers
computationally feasible. For example, if we use non-negative matrix factorization to divide
our dictionary of words into 50 topics, we represent each tweet as a vector over a set of
50 topics instead of representing each tweet as a vector over a dictionary with over 7500
words. Thus, we will use only 0.67% of the memory we would have needed if we had opted
to process the data in the raw word-frequency format.

With this modification, we use topic-frequency chunks instead of word-frequency chunks
as input for the MGGCM algorithm. We thus refer to this modification of the input to the
algorithm as Topical MGGCM (TMGGCM). Because it is infeasible to apply MGGCM to
Twitter directly, from here on we use TMGGCM. While we expect information to be lost
with this transformation, for example we already know that the factorization of X into W
and H is only an approximation, we allow ourselves to use TMGGCM as a tool to determine
causal relationships when it would not be applicable otherwise.

65

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

Blogger Number

Re
sid

ua
l

Figure 7.1: Residual Plot of Twitter Data 1

0 10 20 30 40 50
0

20

40

60

80

Blogger Number

Re
sid

ua
l

Figure 7.2: Residual Plot on Twitter Data 1 Zoomed on First 50 Bloggers

7.1.2 Sensitivity to Parameters

Before we can directly apply TMGGCM to Twitter data, there are numerous other pa-
rameters to consider that did not arise when looking at simulation data. For example,
TMGGCM requires that we divide our data into time steps and requires us to choose the
lag which indicates how far back we want to look for influence. Figures 7.1 and 7.2 are
example residual plots from a naive parametrization of our Twitter data.

Figures 6.1 and 6.2 show very clearly how it is relatively easy to determine which
groups are causally influential using our simulated data; on the other hand, Figures 7.1
and 7.2 indicate that there are numerous bloggers that completely explain the residual.
This is an undesirable result and could be caused by a bad or naive parametrization of the
discretization of time τ , the choice of lag d, or the number of topics K to use.

For Figures 7.3 and 7.4, we chose τ = 110, d = 5, and K = 30. These choices for param-
eters provide a much more reasonable residual plot than our first tests; rather than having
many bloggers apparently explain the entire residual, we see a more uniformly distributed
residual plot. Comparing Figures 7.2 and 7.4, we can see how sensitive our algorithm is
to the choices for parameters, and the comparison indicates that the parametrization is a
crucial problem in learning how to apply TMGGCM to Twitter data.

7.1.3 Benchmarking

One problem with working on Twitter data is that we have no clear way to determine if we
have correctly solved the problem of determining who is influential. While we could look

66

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Blogger

Re
sid

ua
l

Figure 7.3: Residual Plot of Twitter Data 2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Blogger

Re
sid

ua
l

Figure 7.4: Residual Plot of Twitter Data 2 Zoomed on First 50 Bloggers

67

at measures such as the number of followers a user has or the number of times he or she is
retweeted, neither of these measures captures exactly what we hope our algorithm measures
since we are looking for more subtle forms of influence that are never explicitly stated. On
the other hand, we would assume that if a given tweet is retweeted, then it is being read and
digested and the blogger is exerting an influence. Thus, to test our algorithm’s performance
on Twitter data, we often look at the correlation between the Granger rank of a blogger as
determined by the output causal graph of our algorithm and the blogger’s retweet rate.

To calculate the correlation between the Granger rank of a blogger and the the blogger’s
retweet rate, there are several possibilities to consider. First, we must decide if we want to
restrict the retweets to be those retweets that occur between two bloggers within our set, or
if one of the bloggers can be from outside of our set. We will call the restriction of retweets
to those that occur between two bloggers in our set restricted retweet rate; otherwise, we will
be using unrestricted retweet rate, which takes into account all retweets. A third possibility
is to binarize the retweet information we gain from the restricted retweet rate. This counts
the number of people who have retweeted a given blogger. We will call this binarized retweet
rate.

We also use three different correlational measures: Spearman, Pearson, and Kendall.
For more information about each measure, please refer to [9] and [12] respectively.

7.1.4 Removing Zero-Content Entries

Another problem with working on real Twitter data is that not all Twitter users tweet at
the same rate. Some are quite prolific and so they tweet more often, while others may tweet
much less frequently. This makes it hard to decide how best to represent a user’s content
during a time step in which he or she does not tweet. There are several options to consider:

1. We could do nothing. Even if a user has no content during a time step, we will leave
it be and represent it as all zeros. However, this could lead our algorithm to select
other bloggers that also do nothing as predicting what the user will do. This seems
like an unwanted consequence of our definition of causal influence, and so we want to
avoid this situation.

2. We could reduce the discretization of time. By decreasing the number of time steps
that we use to divide our content, we increase the chance that any given user will have
written a tweet in that time step since each time step will represent more real-world
time. This could lead to a loss of information since multiple tweets could be collapsed
in a single time step.

3. We could remove zero-content entries. Instead of trying to predict zero content, we
could remove any entries that are all zeros. This would mean that we would only try
to predict a user’s content if there is non-zero content to predict. This eliminates the
problem of using other bloggers to predict when a user does nothing.

From a cursory glance, the last option seems to be the most appealing in terms of
desirable outcomes. To implement this option, when solving the multivariate regression
Y = XW that models our notion of influence, where Y is the content of the blogger we
want to predict and X is the content of all the bloggers, we would remove any rows of Y
that are all zeros. Because a row of Y is explained by a single corresponding row of X, we
would also remove the corresponding row of X. Unfortunately, this means that we must
also recalculate the kernels for each individual blogger when we run MGOMP to determine

68

the influential bloggers. In our original implementation of TMGGCM, we could reuse the
kernels for all of the bloggers since they would not change. However, if we want to remove
zero-content entries, then we must first find the zero-content entries for the blogger that
we are trying to predict, and then modify the kernels to reflect this removal. Because we
cannot reuse the kernels and must calculate them anew for each blogger, this process is
computationally intensive and uses a lot of memory. From here on, we will refer to running
TMGGCM with the zero content removed as No Zero Topical MGGCM (NZTMGGCM).

Due to the computational intensity of NZTMGGCM and other time constraints, we
ran NZTMGGCM on a smaller subset of bloggers derived from our original Twitter data.
We generated the smaller data set using the Twitter accounts from our original data set
whose account names start with ”ibm”. There are a total of 23 such accounts, and there
are 78 retweets amongst them. The table below shows a comparison of applying TMGGCM
versus NZTMGGCM to this smaller data set. Applying the NZTMGGCM algorithm instead
of the normal TMGGCM algorithm to our data leads to better results when comparing
the Granger ranks of the corresponding output graphs to the binarized retweet rate of
each blogger. Since these correlations are generally higher for the NZTMGGCM algorithm
compared to the TMGGCM algorithm, in particular when τ = 50, we are led to believe
that NZTMGGCM gives us a better measure of influence than TMGGCM. All tests were
run with K = 50 and d = 5.

TMGGCM NZTMGGCM
τ = 50 τ = 110 τ = 50 τ = 110

Spearman 0.243844 0.234563 0.466782 0.353553
Pearson 0.386650 0.602555 0.629276 0.594453
Kendall 0.182179 0.198020 0.393088 0.294884

7.2 Randomized Sub-Sampling of Projections

One drawback of MGOMP is the need to calculate the projection of every blogger onto the
residual for each iteration of the selection process. If we have a network of 1000 bloggers,
we must calculate 1000 projections for every iteration of MGOMP, and to run TMGGCM,
we must run MGOMP on each of the 1000 bloggers. If it is possible to reduce the number
of projections we must calculate, we should theoretically be able to make TMGGCM more
computationally efficient and take less time.

If we assume that the projections have a uniform distribution, a sample of size s =
d log(ε)log(q)e has a maximum that is in the top (1 − q) % of values with probability 1 − ε. For
example, if we want to take a subset of the projections which has a maximum in the largest
5% of values with probability 95%, we need to sample only s = d log(0.05)log(0.95)e = 59 elements
and look at its maximum. Applying this idea to our algorithm, we could sample many fewer
projections at each iteration and still be relatively confident that our algorithm will choose
bloggers that predict a large amount of the content.

To test this idea, we applied both TMGGCM to a set of 1000 bloggers as well as a
modified TMGGCM algorithm that utilizes random sub-sampling of the projections during
MGOMP. We compared the results of the algorithm by looking at how well the TMGGCM
with random sub-sampling algorithm reconstructs the causal graph that normal TMGGCM
outputs and the correlation between the Granger ranks calculated from each causal graph.

69

Table 7.1: Granger Rank vs. Retweet Rate correlations
Type of Correlation τ = 50, d = 5 τ = 100, d = 5

Spearman 0.259382 0.400011
Pearson -0.006446 0.386752
Kendall 0.234703 0.375525

Parameters Spearman Correlation Pearson correlation F1

q = .95, ε = .05 .2827 .6502 .003766
q = .97, ε = .03 .3431 .7364 .002722

As expected, the F1 value is very low for both runs of TMGGCM with random sub-
sampling; we do not expect an algorithm with random sub-sampling to faithfully reconstruct
the causal graph from TMGGCM because it cannot choose the same blogger for any given
iteration if that blogger was not randomly included in the sample. On the other hand,
we see that the Pearson correlations for the Granger ranks derived from the causal graphs
are relatively high, implying that the TMGGCM algorithm with random sub-sampling
does a fairly good job at reconstructing who is most influential from a Granger causality
perspective. This suggests that randomized sub-sampling of projections might be very
useful in this and other applications of MGOMP since we drastically reduce the number of
projection computations calculated for each iteration.

For our situation, randomizing the sub-sampling is likely not going to help improve the
efficiency of our code if we also want to remove zero-content entries. Using NZTMGGCM,
the dominant computation time is spent removing zero-content entries and recalculating
kernels rather than computing projections. Thus, the information lost is probably not
worth the marginal gain in speed using NZTMGGCM, so this idea is only applicable to the
normal TMGGCM algorithm.

7.3 Provisional Results

In this section, we include our provisional results of applying TMGGCM and NZTMGGCM
to Twitter data. Due to time constraints, we did not run all of the tests and experiments
that we would have liked and thus are hesitant to make claims about the results.

Applying NZTMGGCM to the small dataset and comparing the Granger ranks taken
from the output of the NZTMGGCM algorithm with the binarized retweet rate for each
blogger, we obtain the results shown in Figure 7.5.

Figure 7.5 illustrates how important the discretization of time is to obtaining a high
correlation with retweet rate. When we choose the total number of time steps to be 110, we
get an impressive correlation result of 0.52, but for some other choices of τ , the correlation
is much weaker.

Table 7.1 gives a closer look at some points of the above graph, and Figure 7.6 shows
analogous results for d = 10.

As mentioned previously, we have a full data set consisting of the content of 1000
bloggers. For those bloggers, we have two different sets of retweet data. One called Retweet
Dataset 1 consists of 5957 retweets, with 3392 occurring amongst our 1000 bloggers. The
other called Retweet Dataset 2 consists of 11584 retweets, of which 11133 include one of our
1000 bloggers as the retweeting one or the one being retweeted.

70

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Total time steps

C
or

re
la

tio
n

Correlation vs. Discretization

Binary Spearman

Figure 7.5: Spearman correlation between retweet rate and Granger Rank for various
τ with d = 5

71

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total time steps

Co
rre

la
tio

n

Correlation vs. Discretization

Binary Spearman

Figure 7.6: Spearman correlation between retweet rate and Granger Rank for various
τ with d = 10

72

Running TMGGCM on 1000 bloggers with Retweet Dataset 2 and using the number of
topics K = 75, the number of time steps τ = 70, and the lag d = 5, we get the following
correlations with unrestricted retweet rate:

Spearman Correlation: 0.041110
Pearson Correlation: -0.001355
Kendall Correlation: 0.036660

Below is a run of the same algorithm with the same parameters, but this time we use
Retweet Dataset 1 and restricted retweet rate. Pearson correlation results are especially
promising in this case.

Non-Binarized Spearman Correlation: 0.129009
Non-Binarized Pearson Correlation: 0.395857
Non-Binarized Kendall Correlation: 0.119948

Below is the correlation between unrestricted retweet rate and binarized retweet rate for
Retweet Dataset 2.

Non-Binarized Spearman Correlation: 0.431164
Non-Binarized Pearson Correlation: 0.285423
Non-Binarized Kendall Correlation: 0.327382

Finally, here is the same measurement using Retweet Dataset 1.

Non-Binarized Spearman Correlation: 0.120127
Non-Binarized Pearson Correlation: 0.239098
Non-Binarized Kendall Correlation: 0.093247

For Figures 7.3 and 7.3, we look at how changing the lag parameter d affects the graph
over the discretization of time τ using unrestricted retweet rate.

Figure ?? shows the correlation results using restricted retweet rate, Retweet Dataset 1,
and NZTMGGCM.

73

Figure 7.7: Correlation between Granger Rank and unrestricted retweet rate for 1000
Bloggers, 50 Topics and Retweet Dataset 1 for 2 choices of lag

40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

Total time steps

Co
rre

la
tio

n

Correlation vs. Discretization

Binary Spearman

(a) d = 5

40 60 80 100 120 140 160 180 200
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Total time steps

Co
rre

la
tio

n

Correlation vs. Discretization

Binary Spearman

(b) d = 10

74

Figure 7.8: Correlation between Granger Rank and unrestricted retweet rate for 1000
Bloggers, 50 Topics and Retweet Dataset 2 for 2 choices of lag

40 60 80 100 120 140 160 180 200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Total time steps

C
or

re
la

tio
n

Correlation vs. Discretization

Binary Spearman

(a) d = 5

40 60 80 100 120 140 160 180 200
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Total time steps

Co
rre

la
tio

n

Correlation vs. Discretization

Binary Spearman

(b) d = 10

75

Figure 7.9: Correlation between Granger Rank and restricted retweet rate for 1000
Bloggers, 50 Topics and Retweet Dataset 1 for two different lags, using NZTMGGCM

0 50 100 150 200 250 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Total time steps

C
or

re
la

tio
n

Correlation vs. Discretization

Binary Spearman

(a) d = 5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Total time steps

Co
rre

la
tio

n

Correlation vs. Discretization

Binary Spearman

(b) d = 10

76

Chapter 8

Conclusion

8.1 Overview of Work Accomplished

We have produced an algorithm for sparse NMF which performed better than Hoyer’s
algorithm in most of our tests, and found algorithms for performing automatic selection
of parameters. This NMF algorithm was then used to make the application of MGGCM
to Twitter computationally feasible. Doing so, we were able to attain an impressive 0.5
correlation between Granger Rank and retweet rate for one set of parameters.

8.2 Future Avenues of Research

8.2.1 NMF

• The simplex-projection method is fast but not always accurate, especially for large
values of z. A more accurate method of solving arg min||ht||1=z ||X −WH||2F would
allow us to try a much wider range of z during model selection and could lead to
faster convergence.

• We have never determined how well RRI performs in an absolute sense (i.e. in terms
of finding the true global minimum. Let fX : R2 → R be defined such that fX(a, b) =
inf ||W ||0=a, ||H||0=b ||X−WH||2F . How well does the surface parametrized by our choice
of λ and z approximate this function?

• Our model selection techniques rely heavily on unproven facts about the shape of the
reconstruction error vs. ||W ||0 vs. ||H||0 surface. Facts about the shape of the graph
of the function f might be applicable to our model-selection techniques and might be
of independent interest.

• Our initialization procedure requires a lot of memory - in fact the maximum memory
usage of the algorithm occurs during the first iteration and depends primarily upon
the density of the initialization of W . Can the initialization procedure be found which
uses less memory without losing accuracy?

8.2.2 Causal Influence Modeling

• MGGCM has proven very effective on simulation data when it has an oracle estimate,
but more research should be done on alternative methods to stop the selection process

77

in MGOMP.

• MGGCM is sensitive to numerous parameters such as the discretization of time τ ,
the lag d, the number of topics K, etc. Further studies are needed to determine how
best to choose these parameters for a given set of data.

• MGGCM seems to perform better when we remove zero-content entries; however,
the algorithm runs much slower and consumes more memory when we do this. More
exploration on the effects of removing zero-content entries and how best to implement
such an algorithm in a fast and efficient way is needed.

78

Appendix A

Matlab Code

In this appendix we present the main algorithms developed as implemented in Matlab code.
This Matlab code as well as our diagnostic code will also be submitted electronically. The
contents are as follows:

rri.m Performs Rank-1 Residue Iterations with `1 regularization on W and `1 constraint
on H to factor X ≈WH

spinitialize nmf.m Initializes W and H for RRI algorithm

rri multiple iterations.m Performs RRI with a number of different iterations, chooses
the best one

directionalCornerFinder.m Finds a corner on the curve in the (||X −WH||2F , ||W ||0 +
||H||0) plane parametrized by a line segment in the (λ, z) plane

optLambda.m Finds an optimal λ for fixed z using 1-dimensional corner-finding

tripletCornerFinder.m Finds an optimal (λ, z) using 2-dimensional corner-finding

optZ.m Finds an optimal z for fixed λ using 1-dimensional corner-finding

projfunc.m Projects vectors onto a zimplex of constant `1-norm in Rd

optLambdaZAlternating.m Alternates optLambda and optZ to find optimal (λ, z)

measureReconstruction.m Calculates sparsities and reconstruction error for a factor-
ization X ≈WH

ThresholdMGOMP.m Performs MGOMP with a threshold stopping criterion

MGGCMBlockSel.m Performs MGGCM using block-processing and a model selection
criterion

MGGCMBlockNoZero Performs MGGCM with zero-removal

follower retweet corr real.m Computes the unrestricted correlation results between the
number of followers and retweets the bloggers have.

follower retweet corr.m Computes the correlation between the number of followers and
retweeters/retweets the bloggers have. Both results are ”restricted correlation results”
i.e. retweets are restricted to be between the bloggers of our interest only.

79

get B.m Discretizes the tweet data

rankComparator.m Computes the ”restricted retweet correlation”

rankComparatorReal.m Computes ”unrestricted retweet correlation”

tau d optimizer.m Runs the TMGGCM algorithm and saves the output causal graphs
which will be used to calculate correlation results using different methods.

twitter tester.m Performs the TMGGCM algorithm.

80

Selected Bibliography Including
Cited Works

[1] Machine Learning Group at UCD. Bbc datasets, aug 2010.
http://mlg.ucd.ie/datasets/bbc.html.

[2] Grzegorz Świrszcz Aurélie C. Lozano and Naoki Abe. Group orthogonal matching pur-
suit for variable selection and prediction. Advances in Neural Information Processing
Systems (NIPS), 22, 2009.

[3] Emmanuel Candes and Terrence Tao. Decoding by linear programming. IEEE Trans.
Info. Theory, 51:4203–4215, 2004.

[4] The Linguistic Data Consortium. Description of the tdt2 data sources, aug 2010.
http://projects.ldc.upenn.edu/TDT2/tdt2.corpusdoc.html.

[5] C.W.J. Granger. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica, 37(3):424–438, 1969.

[6] Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal
dominance in kernel document clustering. In Proc. 23rd International Conference on
Machine learning (ICML’06), pages 377–384. ACM Press, 2006.

[7] Per Christian Hansen. Analysis of discrete ill-posed problems by means of the l-curve.
SIAM Review, 34(4):561–580, dec 1992.

[8] Per Christian Hansen and Dianne Prost O’Leary. The use of the l-curve in the reg-
ularization of discrete ill-posed problems. SIAM Journal of Scientific Computation,
14(6):1487–1503, nov 1993.

[9] Tibshirani Hastie and Friedman. Elements of Statistical Learning. Springer-Verlag,
2008.

[10] Ngoc-Diep Ho. Nonnegative Matrix Factorizations Algorithms and Applications. PhD
thesis, Académie universitaire Louvain, Boston, MA, USA, 2008.

[11] Patrik Hoyer. Non-negative matrix factorization with sparseness constraints. Journal
of Machine Learning Research, 5:1457–1469, 2004.

[12] M. Kendall. A new measure of rank correlation. biometrica, 30:81–89, 1938.

[13] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 1999.

81

[14] Aurélie Lozano and Vikas Sindhwani. Inferring key influencers in online communities
using multivariate grouped granger causality. Submitted to the international Confer-
ence on Machine Learning, 2010.

[15] Jason Rennie. Home page for 20 newsgroups data set, aug 2010.
http://people.csail.mit.edu/jrennie/20Newsgroups/.

[16] D. D. Lewis; Y. Yang; T. Rose and F. Li. F. rcv1: A new benchmark collection for
text categorization research. Jounal of Machine Learning Research, 5:361–397, 2004.
http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf.

[17] C. Spearman. The proof and measurement of association between two things. Ameican.
Journal of Psychology, 15:72101, 1904.

[18] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Trans. Info. Theory, 53(12):4655–4666, Dec 2007.

[19] Eric Zivot. Vector autoregressive models for multivariate time series (lecture notes).
http://faculty.washington.edu/ezivot/econ584/notes/varModels.pdf, apr 2005.

82

